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121 16 Prague 2, Czech Republic
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Abstract. A recently suggested simple model of an open microscopic system interacting with
a bath and behaving like an isothermal Maxwell daemon is simplified and treated numerically.
Results obtained confirm expectations that the system can, at the cost of thermal energy of
the bath, spontaneously and in a cyclic process, pump particles from a particle reservoir to
states with even higher energy. This contradicts the usual opinion based on the second law of
macroscopic thermodynamics. For this effect, the interaction with the bath cannot be treated as
weak. The role of dephasing owing to this interaction is illustrated.

1. Hamiltonian

Recently, we have found a model with an interesting property of pumping particles, purely
on account of the thermal reservoir energy of a single bath, in an open system from one side
(particle reservoir) to another one preserving or even slightly increasing the mean particle
energy [1, 2]. Other types of this model working with pairs of particles also exist [3, 4]. The
principle on which the system works reminds us, as far as the final effect is concerned, of the
Maxwell daemon [5, 6]. The underlying physics is, on the other hand, remarkably different.
The main difference consists in the fact that in our case, also called the isothermal Maxwell
daemon, the central system (daemon) working as a pump is, in contrast to [5, 6], an inherent
part of the system. The system interacts with the bath and together all are described by the
standard Liouville equation for the system+ bath complex. The above behaviour resulting
from rigorous analytical treatments is, of course, hardly compatible with the macroscopic
equilibrium thermodynamics for a quasi-independent system and bath. That is what makes
the problem attractive and why studies of such one-way transport mechanisms are important.

In [2], a semiclassical version corresponding to the original quantum model [1] is also
briefly mentioned. Its solution has, however, been only very briefly reported in [7]. There
has been no detailed discussion of the resulting one-directional transfer even against external
forces on account of the fact that only the thermal energy of a single bath exists. This is
the aim of the present work. The semiclassical model, in its simplest form, is described by
the Hamiltonian of the system

HS(t) = δεc†1c1+ J (c†−1c0+ c†0c−1)[1− z(t)] + I (c†1c0+ c†0c1)[1+ z(t)] − εz(t)c†0c0. (1)
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It involves only one particle on three sites with particle creation (annihilation) operatorsc
†
m

(cm), m = −1, 0 or+1. δε describes increase of the particle (site) energy upon the transfer
‘ −1’ → ‘ +1’ found below with an initial condition corresponding to the particle localized
at, e.g. site ‘−1’. J andI play the role of the usual particle hopping (transfer) integrals; both
valuesI = J andI 6= J are admissable. The hopping integrals are, however, multiplied by
factors 1± z(t) wherez(t) is a c-number (i.e. classical) variable∈ 〈−1,+1〉 describing the
state of a central system (the isothermal Maxwell daemon) able to open (close) the transfer
channels ‘− 1’ ↔ ‘0’ and ‘0’ ↔ ‘ + 1’. The physical meaning ofz(t) is the mean value
of ẑ ≡ |u〉〈u| − |d〉〈d| where|u〉 and |d〉 are two states of a two-level system (representing
our central system or daemon) separated, on the energy axis, by the energy differenceε.
Quantum mechanically, one can easily describe instability of the central system upon the
particle transfer to site ‘0’ assumed to form a receptor inherently connected with the central
system (daemon). This instability (change of the topological orientation or conformation)
is well known in, e.g. the macromolecular world (e.g. valinomycine upon accepting the K+

ion [8]). Owing to the semiclassical way of describing the daemon conformation [2], the
above states of the daemon do not explicitly appear in (1).

From (1), one obtains the Schrödinger equation

ih̄
∂

∂t

(
ψ−1(t)

ψ0(t)

ψ1(t)

)
=
( 0 J (1− z(t)) 0
J (1− z(t)) −εz(t) I (1+ z(t))

0 I (1+ z(t)) δε

)
·
(
ψ−1(t)

ψ0(t)

ψ1(t)

)
(2)

whereψn(t) represent site probability amplitudes to find the particle at siten. As for z(t),
one must introduce a relaxation equation representing the instability as well as the effect of
the system bath and the bath HamiltoniansHS−B andHB . We assume a simple dynamical
equation

∂

∂t
z(t) = −γ [z(t)+ 1− 2|ψ0(t)|2] (3)

describing exponential relaxation (with, in general,ε- and temperature-dependent relaxation
rateγ ) to values corresponding to an instantaneous population of the receptor site ‘0’. In
particular, as far as the particle is fully localized to (or absent at) site ‘0’,z(t) relaxes to
+1 (or −1). The exponential form of the relaxation according to (3) is not important. It
is dictated anyway by the Markovian form of (3) which is now easy to derive by modern
methods of the nonequilibrium statistical mechanics [9].

Let us now remind ourselves of the dephasing existing in nature but formally omitted in
the noiseless equation (3). In many situations (as verified numerically), it is not necessary.
In order to model more realistic situations, it will be reintroduced into our numerical studies
below. (The reader is referred below for detailed arguments and technical details.) As is
well known, the noise can be easily added to the Schrödinger equation provided we model
it by an external stochastic potential; the theory as well as practice is now well established
[10–12]. As we shall, however, argue below one also gets the dephasing with the fully
quantum and responsive bath. Averaging over the noise obtained can of course be well
performed only on the level of the density matrix. The latter task shall not be solved here.
We do not need it, however, for our purposes because we get (as reported below and for
specified values of parameters of the model) the one-directional transfer for any realization
of the noise with properly chosen intensity of the dephasing. Thus, the averaging cannot
change the existence of the one-directional transfer as the main result of this work.

Concerning the dephasing as modelled below, one should stress that weneither need
nor assume the real stochastic picture in our model here. One should realize the following.



Isothermal Maxwell daemon 8747

• If the dephasing exists in the classical (stochastic potential) description of the bath, it
inevitably also exists in its quantum description. The point is that the classical description
is nothing but a limiting case of the quantum one. The notion of dephasing is now well
established and built into the quantum theory of open systems [13].
• Our basic equations like (3) above are in fact written as for a genuinely quantum bath;

with the stochastic description of the bath,z(t) would relax toz = 0 only.

2. Analytical semiclassical solution

This section is necessary before resorting to numerical calculations in order to understand
some peculiarities reported below. The point is that our set (2), (3) is, owing to the above
semiclassical approximation̂z → z(t) ≡ 〈z〉(t), nonlinear. This may provide a variety of
possibilities and connections between general and stationary solutions, including even chaos
[14].

Except for
∑+1

n=−1 |ψn(t)|2, no conserving quantity is seen in the above dynamical
problem. Owing to the nonlinearity, no nonstationary analytical solutions to (2), (3)
have been found analytically. Let us add that the task is technically complicated, being
represented by a motion of a representing point in a seven-dimensional space. The first task
in investigating time dependence of physical observables in nonlinear systems is, however,
an analysis of stationary states. For that, let us for a while putδε = 0.

For arbitrary values of input parameters, there are at least three stationary states of our
semiclassical problem. The three solutions (up to a phase factor) read

E1 = 0 z(t) = −1(
ψ−1(t)

ψ0(t)

ψ+1(t)

)
=
( 0

0
1

)
(4)

and

E2,3 = ±
√
J 2+ I 2 z(t) = 0(

ψ−1(t)

ψ0(t)

ψ+1(t)

)
= 1√

2

(±J/(√J 2+ I 2)

1
±I/(√J 2+ I 2)

)
· e∓i

√
J 2+I 2t/h̄.

(5)

In state (4), the particle is already on the right-hand side and the system (provided we
admit more-particle states) is able to accept another particle from the left. This solution
corresponds to the expected asymptotic state (see [2]), as we are going to argue below
(limit cycle or circle of physically equivalent attractors in the seven-dimensional space of
Reψm, Imψn (n = −1, 0,+1) and z(t)). One should mention that this is owing to the
lucky fact that the semiclassical replacementẑ → z(t) underlying (1) becomes exact as
long as we are in a state where the operator on the left-hand side assumes a sharp value
(i.e. −1 in our case). Such an advantageous situation does not appear in other (including
nonstationary) states, in particular (5). In the corresponding states, the central system is
in an ‘equilibrium’ with the particle which is partly on both sides. Such an ‘equilibrium’
immediately becomes disturbed once quantum fluctuations are taken into account, as is also
illustrated below. Such fluctuations in particular violate sharp phase relations (underlying
in fact this ‘equilibrium’ situation) among individual componentsψm(t) of (5). In contrast,
one should notice that no such relations can be established among components of (4). That
is why (4) may survive as the asymptotic solution (attractor) even under the presence of
the noise to be introduced below. One should also add that (5) is a stationary solution
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in the physical sense only (stationarity for the squared amplitudes|ψn(t)|2). In the above
seven-dimensional space, (5) provide a periodic solution (limit cycle) in the usual sense as
the phase factor never dies out.

For special values of the parameters, one can also identify other stationary solutions
with similar characteristics as above. In particular, for 8|IJ | < ε2, two other stationary
solutions exist with

z± = (−4I 2+ 4J 2±
√
ε4− 64I 2J 2)/(ε2+ 4I 2+ 4J 2) 6= 0 z± ∈ (−1,+1). (6)

The corresponding energies read

E± = −0.5ε(z± + 1) (7)

and the solutions are(
ψ−1(t)

ψ0(t)

ψ+1(t)

)
=
√

1+ z±
2

(− 2J (1−z±)
ε(z±+1)

1
− 2I

ε

)
· eiε(z±+1)t/2h̄. (8)

If, e.g. 8|IJ | = ε2 then z+ = z−. We then only get one additional solution for|I | 6= |J |
or no additional solution for|I | = |J |. If 8|IJ | > ε2, the additional solutions disappear.
Properties of these additional solutions as far as the existence of fixed phase relations among
ψn(t) are concerned are the same as above.

Unfortunately, similar simple analysis cannot be performed analytically forδε 6= 0.
Quasiperiodic or periodic solutions to (2), (3) may then, however, persist until the first
dephasing event takes place. For a sufficient density of the dephasing events, one always
finds that the solution finally yields the full ‘− 1’ → ‘ + 1’ transfer.

3. Numerical studies

Let us now continue with generalδε, |δε| < ε. Disturbing the last inequality makes the
model unphysical [2] (no one-way transfer exists in the original quantum model [2]). The
first point to be discussed is that the formulation of our problem to be solved here as
given by (2) and (3) differs from the original quantum problem with inclusion ofHB and
HS−B not only by formal omission of any additional dephasing in our noiseless equation
(3). The semiclassical approximation consisting in replacingẑ ≡ |u〉〈u| − |d〉〈d| by its
mean valuez(t) appreciablyunderestimatesthe tendency to the one-way particle transfer
‘ − 1’ → ‘ + 1’. The point is that in the original quantum problem [2], the|u〉 ↔ |d〉
transitions, i.e. closing and opening of the trap (gate) to the left and right, appear after the
particle comes to and from site ‘0’ in thesamesystem in the ensemble. On the other hand,
replacingẑ by its mean valuez(t) means to relate the process of closing and opening of
the trap to the mean situation in all the systems in the whole ensemble. Moreover, as the
values ofz(t) lie in the whole intervalz(t) ∈ 〈−1,+1〉, the opening or closing the gate in
each system of the ensemble is, as in our semiclassical model (2), (3) and in contrast to
the original quantum one [2], only partial. Consequently, once we get the one-way transfer
from the semiclassical formulation of the problem here, we have good grounds to assert
that a similar and even more pronounced effect is described by the original quantum model
[2] as well. The opposite is, however, clearly not true. All our numerical results below
are reported for the initial conditionψ−1(0) = 1− ψ0(0) = 1− ψ+1(0) = 1 (the particle
is initially at site ‘−1’) and z(0) = −1. Qualitatively similar results are also obtained for
other initial conditions. Next, we assume everywhere the symmetric hopping situation with
J = I > 0. Possibly different valuesJ 6= I cannot yield qualitatively different overall
picture of the process.
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The next point is connected with reintroduction of the above dephasing omitted at the
moment of postulating (2), (3). First, let us notice that including the longitudinal relaxation
(longitudinal relaxation timeT1) means, according to the famous relation

T1 & 0.5T2 (9)

(see [15, 16]) automatic inclusion of the corresponding dephasing characterized by the
transversal relaxation (dephasing) timeT2. Thus, the dephasing connected with the
|d〉 ↔ |u〉 transitions (longitudinal relaxation) of our central system is already included.
It underlies the very introduction of the transfer rates between the|u〉 and |d〉 states of our
central system, i.e.γ in (3). These transitions are due to the coupling of the central system
to the thermodynamic bath.

On the other hand, let us realize that as usual;
• the transversal relaxation is usually much faster than the corresponding longitudinal

one,
• it can even exist for such types of the coupling to the bath when the longitudinal

relaxation does not exist (T2 is finite while T1 turns to infinity in (9)), and
• not only the central system (for which the bath-assisted transitions are already

included) but also the particle transferred is in general coupled to the bath.
The latter coupling, in its simplest form leading to the transversal relaxation (T2 for the

particle) may only be written in the site-diagonal form proportional to, e.g.c
†
0c0. (Here,

without any impact on the qualitative result of our analysis, we have for simplicity assumed
that only the particle coupling to the bath at site ‘0’ is essential.) Let us now first describe
perhaps not the most physically sound (owing to its classical character) but certainly the
simplest, as well as the most instructive way, to get the dephasing from this form of
the coupling assuming that it is caused by a classical stochastic field. We have chosen this
possibility at the very beginning to become as convincing as possible. A way of generalizing
these arguments beyond the classical stochastic level of description is sketched below.

Conditions are well established when and to what extent a real coupling to the bath can
be replaced by, e.g. a stochastic fieldU(t) acting (in our case) as a site local random field
[10]. Thus, the term≈ c†0U(t)c0 should in such a case be added to (1). This is the basis
for the so-called stochastic Liouville equation model [11, 17]. As far as this field (bath) is
fast as compared with our particle dynamics, this stochastic field can have the character of
statistically distributed shot noise (known to act on, e.g. Brownian particles as described
by the Langevin equation [22]). Adding such a noise to the 2, 2-element (or 0, 0 in our
notation) in the Hamiltonian matrix on the right-hand side of (2), it is trivial to verify that
each such a stochastic potential shot leads to nothing but a stochastic change of the phase
of the complex variableψ0(t) provided that its duration be appreciably shorter than ¯h/|J |
andh̄/|I |. (In order to see that, one can, during the potential shot, fully neglectJ andI in
(2). Direct integration of the second equation in (2) then yields the required result.)

A highly important objection can now be raised against theclassicalcharacter of random
field U(t) added to the problem. In order to reject such objections, one can simply replace
U(t) by a potential resulting from impacts of inherentlyquantumparticles in the reservoir.
The (almost) shot-like character of the interaction may be then due to their distribution
in space (well localized wavepackets impinging on our system), and their relatively high
velocity with respect to that of the particle transferred. In general, for an arbitrary nontrivial
bath, we always get dephasing in all of the advanced methods of the reduced density matrix
theory (see [18, 19] for methods of the quantum Redfield–Bloch equations).

The above shows why we have eventually complemented our model (2), (3) by a full
randomization of the phase ofψ0(t) at well defined time points. Three comments should
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now be mentioned concerning this procedure.
• This way of introducing the randomization of the phase fully corresponds to purely

quantum theories [20, 21, 9] as well as to the classical Langevin-type description of the
Brownian motion with a stochastic and formally delta-correlated force (acting on the Brown
particle and modelling influence of the bath) [22]. An important physical condition for such
a kind of description is that the bath is very fast (the real duration of the scattering events
is extremely short) as compared with the particle transferred. This is what we also assume
here. This allows then to take the randomization events as fully localized in time (i.e.
happening at only discrete time points).
• Real impact (scattering) of any (classical or quantum) particle lasts, on the other

hand, only a finite time (the scattering duration is finite). Thus, in contrast to physical
expectations, our randomizing procedure seems to introduce zero-correlation time and,
consequently, infinite frequencies or energies into the problem. If true, this would certainly
be nonadmissable at finite temperatures required by (and used in), e.g. (3). The same (and, in
fact, alsoonly formal) problem appears, on the other hand, in the standard classical Langevin
theory of the Brownian motion [22]. This theory also works with finite temperatures (in,
e.g. the resulting Einstein diffusivity versus mobility relation) and, simultaneously, with
formally zero duration of the scattering events, i.e. zero-correlation time of the random
force (formula (1.3.41) of [22]). In the Langevin theory, the stochastic force (irrespective
of the zero-correlation time) produces no heating of the particle as a consequence of, e.g.
the presumed lack of correlation between the stochastic force and particle position. In
our model, one can see that there is no unphysical energy transfer to the system owing
to the above dephasing from, e.g. the energy variational estimate. For finiteJ and I ,
there is a possibility of a finite increase of the particle energy owing to the dephasing, by
the amount of energy which is6 4(|J | + |I |) only. For, e.g. appreciably up-in-energy
transfers with 4(|J | + |I |) � δε, this is certainly a negligible amount. Moreover, this
finite particle energy increase owing to disturbing intersite particle phase relations is fully
physical, existing both in the rigorous quantum theory and in nature (bond breaking). Hence,
no danger of any unphysical energy pumping to the system appears in our case, too. In
general situations, however, the problem of the unlimited energy transfer to the system upon
including stochastic perturbations with, e.g. white frequency spectrum, may be sometimes
quite crucial [10].
• Any distribution of the above randomization times is possible, leading to the same

qualitative result. We have, purely for technical reasons, chosen their regular distribution
at (positive) multiples of the randomization time step1t , keeping only the heights of the
potential shots random (i.e. the random change of the phase ofψ0). In this connection,
one should notice that in many situations, only a few randomization events are necessary
to observe a clear tendency to the full ‘− 1’ → ‘ + 1’ transfer (see, e.g. figure 1). This
illustrates how details of the distribution of the randomization times are of little importance.
In general, the randomization accelerates the transfer process or causes the transfer if there
is no transfer without it. For this to occur, however, it must be sufficiently intense. On the
other hand, too intense randomization preserves the overall tendency to the transfer reported
but makes the pictures obtained too noisy.

Figure 1 illustrates the transfer among sites with the same site energy (horizontal in
energy). The role of the individual randomization events is worth noticing. In such situations
and with general initial conditions, the entropy of the particle distribution clearly turns to its
minimum as a result of activity of our central system. Figure 2 shows a more complicated
case of a transfer going down-in-energy. An important observation is that in our starting
model, we have no bath-assisted mechanism acting directly on the particle transferred which
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Figure 1. Time dependence of probabilitiesPm(t) ≡ |ψm(t)|2 (m = −1, 0, and+1 for curves
‘a’, ‘b’ and ‘c’, respectively) of finding the particle at individual sites, and the daemon parameter
z(t) (curve ‘d’); z(t) = 1 or z(t) = −1 designate the daemon fully open to the right (to release
the transferred particle to the right) or left (to accept another particle from the left if any),
respectively. See the main text for the initial condition. Parametersγ = 5J/h̄, δε = 0, ε = 4J ,
1t = 100h̄/J , I = J > 0.

would prefer its down-in-energy transitions (the asymmetry of the up- and down-in-energy
transitions being due to the spontaneous processes with respect to the bath). The coupling
to the bath in our model only influences the central system. Thus, this picture illustrates the
decisive role of the timing of the gate provided by the central system. It also shows how it
forces the particle to go in one direction only, this time in correspondence with expectations.
The timing also works, however, for the up-in-energy transitions. This time, the one-
directional transfer is, however, contradicting standard statistical physics. Figure 3 shows
such a case. Worth noticing is, that on the one hand, standard chaos (in the mathematical
sense) appears [14]. Three different curves (obtained for three different initial integration
steps) forP+1(t) (i.e. the probability of the particle transfer) are shown that start to deviate
for t & 50h̄/J . All of them, on the other hand, turn to the same valueP+1(t)→+1. That
is to say, owing to the exponentially-like increase (with increasing time) of the influence of
uncertainties in initial conditions, rounding errors etc, the genuine time-dependence of the
solution to our problem becomes numerically unpredictable. What, however, is predictable
is the overall tendency of all the possible curves to the corresponding asymptotic value, i.e.
unity.

All the pictures illustrate that there is no ban on the particle transfer in the direction up-
or down-in-energy in our dynamical model. It also shows how the transfer goes on, typical
timescales for the transfer in the semiclassical model as well as behaviour of the central
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Figure 2. The probabilityP+1(t) of finding the particle already transferred (curve ‘a’), and
the corresponding value of the daemon parameterz(t) (curve ‘b’) for γ = 10J/h̄, δε = −3J ,
ε = 10J , 1t = 1h̄/J .

system. The latter, upon transferring the particle to site ‘+1’, always turns to open to the
left (z(t) turning to−1) waiting for another particle (if any) to be transferred. The chain
character of the process (lying, owing to our technical limitation to only one particle here,
beyond the possibilities of our simple theory) makes the system highly important.

Similar results can also be expected when choosing times of randomizing the phase also
at random. That brings us to the problem which is the explanation of the final transfer of
the particle to site ‘+1’ from the point of view of the mathematical structure of (2) and (3)
only (i.e. apart from physics of the starting quantum model [2]). The solution to (2) and
(3) may be represented as a path in the seven-dimensional space of real variables Reψn,
Imψn (n = −1, 0,+1), andz. The above stationary solutions are in fact periodic solutions
(limiting cycles) in this space. In all the stationary solutions (5) and (8), all theψn(t) are
nonzero and are determined up to a common phase factor. Thus, the relative phase of, e.g.
ψ0(t) andψ1(t) is well determined. Hence, the randomization of just the phase ofψ0(t) at
any randomization event means a relatively long jump in the seven-dimensional space. In
other words, it brings the path out of the neighbourhood of the solution and the wandering
in the seven-dimensional space starts again. At the stationary solution (4), however, the
situation is totally different. Hereψ−1(t) = ψ0(t) = 0. Hence the randomization of the
phase ofψ0 only has no effect, i.e. the path gets resistive with respect to the randomization.
In other words, the solution (4) remains stationary (i.e. as a resistive limit cycle in the
seven-dimensional space) even with respect to any randomization procedure of the type
used above. This helps us to understand what is happening with the solution, even for such
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Figure 3. Three curves of|ψ+1(t)|2 for γ = 10J/h̄, δε = +3J , ε = 10J , 1t = 1h̄/J but three
different values of the initial integration step (0.01, 0.02 and 0.05 in h̄/J units for ‘a’, ‘b’ and
‘c’ curves, respectively). Notice that fort & 50h̄/J , the curves are different (indicating chaotic
behaviour of the solution) but all of them finally turn, with increasing time, to unity.

long times when numerical data become unreliable. Let us add only that all our pictures were
calculated with a high accuracy (double precision calculations) which appreciably exceeds
the accuracy of drawing the pictures. Within the time intervals indicated, the absolute error
in figures 1 and 2 is always appreciably less than 10−8. Figures 1 and 2 were drawn using
at least 10 000 points, and at least 6000 points were used in figure 3.

4. Results versus energy conservation law and second law of thermodynamics

The first questions which should be answered here are;
• how it is possible that the energy of the particles is raised at the cost of that of the bath

when the reorientations of the central system (closing and opening the way for the particle
to the right or to the left) are always owing to down-in-energy (i.e. mostly spontaneous)
transitions of the central system?
• How it is possible that the opening and closing acts of the central system come ‘on

average’ at a proper time to cause, as a final effect, the ‘− 1’ → ‘ + 1’ drain reported here.
Let us add that the proper timing of the above acts is a precondition of the process.

For the second question, there is no ready answer except that we have observed this
timing to be automatically ensured by equations (2), (3) themselves. This perhaps suggests
something deeper in the physics of the model, in particular the tendency to the one-way
‘ − 1’ → ‘ + 1’ transfer already contained in the original quantum model [2]. As for
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the energy conservation, arguments which could be raised in principle against the process
observed, one should add that the dephasing (for the central system at least as a necessary
prerequisite of the process as discussed above) means a continuous energy exchange between
the system and bath. That makes the final energy conservation possible.

Evidently, however, the results reported also contradict the standard formulation of
the second law of thermodynamics in the sense that the particle (or particles, if more of
them were present) acquires additional energy at the cost of that of the bath. There are,
however, several formulations of the second law. In order to be as precise as possible, we
should therefore add now that we mean the following one.There is no (Planck–Thomson)
perpetuum mobile of the second kind allowing to get another form of energy from the thermal
one without compensation(i.e. without additional heat transfer between two reservoirs, from
a warmer to a colder one). In our case, we have assumed, in the original quantum model
[2] as well as in its approximate form treated here, just one bath with (in its thermodynamic
limit) infinite number of modes characterized by a single initial bath temperature entering,
e.g. our parameterγ in (3) above. Hence, no compensation is possible by the very definition
of the model. As for the energy gained, it is, in the limit of smallI andJ at least, determined
by the site-energy differenceδε (we supposeδε > 0 here). In fact,δε then means the particle
potential energy acquired at the cost of thermal energy of our single bath†. The present
model does not include the very act of further transformation or utilization of this potential
energy. Anyway, the model can always be trivially complemented by any mechanism (e.g.
light emission) connected with the direct back+1 → −1 transfer (leakage) with, e.g.
characteristic times appreciably greater than those encountered here. In this situation, there
would be no change of the particle dynamics till the particle is fully transferred to site+1.
Then the above leakage mechanism would, at the longer time scale, release the desired
energy as required by the definition of the perpetuum mobile of the second kind. Hence,
there is a real contradiction with the above formulation of the second law. As for connection
with its other formulations, see any detailed textbook of thermodynamics, e.g. [23]. Let us
only add that invoking the Caratheodory principle stemming from the above formulation of
the second law, one easily arrives at the standard formula

δQ = T · dS (10)

(usually taken as another standard formulation of the second law) of the equilibrium
thermodynamics for the infinitesimal heat incrementδQ and introduces thus the entropy
S. Thus:
• our results above question the usual basis of the axiomatic thermodynamics in

connection with the Planck–Thomson form of the second law, ascribing it (as all the above
effects disappear in the classical limit) with at most a classical meaning. Let us again stress
that compared with the quantum model [2], the model treated here rather underestimates
the tendency to the uphill-in-energy particle transfer obtained. Anyway, it still yields the
effect discussed.
• Questioning the axiomatic thermodynamic basis for (10) based on the Planck–

Thomson formulation of the second law means, however, questioning of neither the notion
of entropy nor of the formula (10) itself. Let us remind the reader that the notion of entropy
is now well established in statistical physics [24].

As far as the second law in form of (10) is concerned, one can still understand it in two
different ways.

† Worth noticing is that as the particle at sites±1 is not under the influence of, e.g. the site-local coupling to the
bath, there is no site-energy renormalization (small-polaron energy shift) in our model. Thus,δε is not the ‘bare’
(unrenormalized) but real particle energy.
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• First, as a generalization of our everyday experience in the macroscopic world; the
second law then becomes an inherent part of macroscopic thermodynamics. Our system is,
on the other hand, fully microscopic. That deprives us of any possibility to raise objections
against the above numerical results using macroscopic phenomenological arguments of this
type.
• Second, as a consequence of the nonequilibrium statistical mechanics and microscopic

equations of motion. Here, one must admit, however, that this programme has so far only
been accomplished at the level of the classical statistical mechanics [25, 26]. Then (10)
results from the first-order expansion in powers of a small parameter of the problem defined
as a ratio of the diameter of the particles and typical dimension of the system. Thus, the
parameter is really small in truly macroscopic systems but is not, on the other hand, small
in systems like the one investigated here.
• Concerning the latter point, one important comment concerning methods of quantum

dynamical semigroups [27] should be added. These methods are based on time-local
differential equations determining the time-dependence of the density matrix of the system
only. Conclusions then support standard understanding of transport phenomena, thus
contradicting our above results. One should add, however, that the starting time-local
equations can be derived only approximately (using, e.g. the Born–Markov approximations
to time-convolution generalized master equations, or unphysical unbounded-from-below
model Hamiltonians etc.) or by taking the singular coupling limit [27]. Real applicability
of such approximate methods is, however, highly limited (compare, e.g. rigorous arguments
in [28–30] concerning the applicability of such methods to at most finite time intervals). As
for the singular coupling limit methods, they require, e.g. simultaneous coupling strength as
well as time rescaling. In physical terms, the bath, as well as the system relaxation under
its influence, should become infinitely fast. For our model here, we could check such a
limiting case by taking theγ → +∞ limit, keeping other (system) parameters constant.
Our numerical results then indicate that the effect reported above disappears. Hence, there
is no contradiction between the quantum dynamical semigroups method and the present
model.

In connection with the above discussion, one should again stress that our starting model
[2] is fully quantum and ceases to work in the classical limit. To our knowledge, no
unambiguous derivation of the Planck–Thomson form of the second law applicable to the
purely quantum regime and truely microscopic systems exists so far. On the other hand and
also to the best of our knowledge, no quantum and truely microscopic systems have been
reported so far which show a behaviour contradicting this law as our model here. The only
exceptions are variations of the present model for pairs of particles (leading to conversion
of the thermal bath energy into the chemical one) for which analytical solutions supporting
the above picture exist [3, 4]. As for the ratchets models ([31] and papers cited therein),
they require an external noise (absent here) in addition to the influence of the bath, in order
to compete with the second law. This is what perhaps makes these models less realistic.
The above, therefore, makes the model treated here and its behaviour still more important.
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